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Abstract

The propagation and attenuation of acoustic waves in an exterior domain is an essential ingredient in the
study of acoustic–structure interaction. In this paper the problems of acoustic radiation from an arbitrarily
shaped vibrating body in an infinite exterior region are investigated by using a fractal two-level finite
element mesh (FEM) with self-similar layers in the media enclosing the conventional FEM for the vibrating
body. The fractal two-level FEM has been successfully used in stress intensity factor prediction with self-
similar ratio smaller than one so that the mesh converges to the crack tip. In this paper, the similarity ratio
is bigger than one so that the mesh extends to infinity. By means of the Hankel functions satisfying
automatically Sommerfeld’s radiation conditions at infinity, the different unknown nodal pressures in
different layers are transformed to some common unknowns of the Hankel coefficients. The final matrix
size of the exterior region is equal to the number of terms in the Hankel expansion. The set of infinite
number of unknowns of nodal pressure is reduced to a set of small finite number of Hankel’s coefficients.
All layers have the same unknowns after the transformation. Due to self-similarity, the transformed
stiffness matrix of the first layer is proportional to that of the second and so on. Therefore, the stiffness
matrices of the infinite layers can be summed by using just one layer. Numerical examples show that this
method is efficient and accurate in solving unbounded acoustic problems.
r 2003 Published by Elsevier Ltd.

1. Introduction

In modern engineering, the study of acoustic–structure interaction encountered in many kinds
of structural systems, especially large systems, such as railway, cloverleaf junction, sports field and
concert hall, is of great significance for noise pollution control and reduction, and structure
optimization design. An important building block in the study of structural acoustics and fluid–
structure interaction is the problems of acoustic radiation and scattering governed by the
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Helmholtz equation or the reduced wave equation in the time-harmonic case. In recent years, a
great amount of research work about the problems has been done. Different mathematical
modelling tools have been developed to solve the problems, ranging from pure analytical
methods, restricted to special geometry cases, to more generally applicable numerical methods
such as finite element and boundary element methods [1–18]. Astley [25] reviewed the current
formulations for infinite elements. His comment on the domain-based method and the infinite
element method is briefly summarized here. The domain-based methods require the truncation of
the computational domain at a discrete distance from the radiating or scattering object and
the application of an approximate boundary operator to simulate anechoic conditions. The
infinite elements do not suffer from the domain truncation problem, but all infinite elements
are susceptible to ill-conditioning that places practical restrictions on their effectiveness at high
radial orders.
Leung and Su [19–21] and Leung [22] presented a fractal finite element method using self-

similar meshes (fractal mesh) that has been very successful to determine the stress intensity factors
in elastic fracture mechanics. The method does not create new elements. The key is to make a self-
similar finite element mesh (FEM) and use the proportional properties of the entries of the
relevant matrices for closed-form summation. It is being implemented within NASTRAN for
stress intensity problems [22]. In this paper the method of fractal FEM for the exterior region
combined with conventional FEM for the vibrating body is developed to solve the unbounded
acoustic problems.
It is appropriate to give a brief description of the fractal mesh used in fracture mechanics here.

Consider a body containing a crack. Use a FEM over the body which is separated into two parts,
a singular region S enclosing the neighbourhood of the crack and a regular region R containing
the remaining part as shown in Fig 1. The mesh on R has no restriction. The mesh on S consists of
concentric curves with the crack tip as centre. The elements between two concentric curves
constitute a layer. The layer stiffness matrices are partially overlapped in the nodal co-ordinates
as shown in Fig 2a. After the nodal co-ordinates are transformed to a common set of generalized
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 Singular Region S 

Regular Region R 

Fig. 1. Construction of fractal mesh.
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co-ordinates using (e.g., Williams) eigenfunction expansion, the partially overlapped stiffness
matrices representing S become fully overlapped as shown in Fig 2b. The size of the overlapping
matrices is equal to the number of eigenfunctions but independent of the number of layers.
As each entry of the overlapped matrices is proportional to a certain power of the scale factor,

the summation over all the layers is similar to the summation over a geometric series. In fact, only
one layer is required to be processed. The stiffness matrix of this layer is generated by
conventional finite elements. Since the power of the scale factor need not be the same for each
entry of the stiffness matrix of a layer, the method provides great flexibility and has been extended
to 3-D penny-shaped cracks.
The method has two distinct advantages in formulation. Firstly, no new finite elements are

generated so that an engineer can use commercial packages. Secondly, the transformation from
nodal displacements to generalized co-ordinates, including the SIF, by means of eigenfunction
expansion near the crack tip is new. Other advantages are (i) SIF is a direct output, which does
not require post-processing, (ii) great saving in computing time and storage, and (iii) very accurate
answer in SIF can be expected.
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Fig. 2. (a) Stiffness matrix of R in nodal co-ordinates plus first five layers of S in nodal co-ordinates, matrices in S are

partially overlapped. (b) Stiffness matrix of R in nodal co-ordinates+first five layers of S in generalized co-ordinates,

matrices in S are fully overlapped and can be summed in closed form.
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The order of the global matrix of Fig. 2a is proportional to the number of layers and becomes
infinity if an infinite number of layers are used. The order of the transformed global matrix of Fig. 2b
is proportional to the number of eigenfunctions taken but independent on the number of layers and
remains finite even if an infinite number of layers are used. The method is very different from the
singular finite elements which require integration of some singular functions to generate new
elements; from the infinite (focus) elements which require the solution of quadratic eigenproblems of
the associated matrix difference equation not applicable for 3-D problems; and from the boundary
elements which also require fine meshes and clustered unknowns at the singular points.
The paper extends the method to infinite domain for the exterior problems by making the self-

similar ratio bigger than one so that the domain covered would extend to infinity. The order of the
final matrix is finite and equal to the number of Henkel terms being considered. Sixty terms are taken
in the numerical examples. The final matrix is of order 60 and is positive definite and well behaved.

2. Governing equation of acoustic wave and its solution

The unbounded domain is divided by a smooth artificial boundary S1 into two parts: a finite
region R1 and an infinite region R2 as shown in Fig. 3. Within R1 a conventional FEM is
employed. In the outer region R2; the fractal geometrical concept is adopted to achieve the self-
similar meshes having similarity ratio bigger than one. The self-similar mesh makes a simple
relationship between the dynamic stiffness matrices of two adjacent layers. By means of the
Hankel functions satisfying automatically Sommerfeld’s radiation conditions at infinity, the
unknown nodal pressures on different layers are transformed to some common unknowns of
the Hankel coefficients. The size of the final matrix over the exterior region is equal to the number
of the Hankel coefficients considered. The set of infinite number of unknowns of nodal pressure is
reduced to the set of small finite number of the Hankel coefficients. All layers have the same
matrix dimension after the transformation and the respective matrices of each layer are summed.
Due to proportionality, the infinite number of layers can be summed in closed form as the entries
of each matrix are in geometric series. That is, processing one layer is enough to represent virtually
a set of infinite number of layers covering an infinity domain.
Let R be an unbounded region with an arbitrary vibrating body bounded by S; which is

assumed piecewise smooth as shown in Fig. 3. The unbounded region is divided into two parts by
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Fig. 3. Geometry of the discussed problem.
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a circular artificial boundary S1; namely R1 and R2; respectively. The inner surface S experiences a
prescribed normal acceleration anðx; tÞ or sound pressure %pðx; tÞ assuming no sound sources are
present. The acoustical pressure pðx; tÞ in the exterior region is governed by the linearized wave
equation [23]

r2p ¼
1

c2
q2p

q2t
in R; ð1Þ

where r2 is the Laplacian operator and c is the sound speed.
For the time-harmonic case, the solution is of the form

pðx; tÞ ¼ Pðx;oÞe�iot; ð2Þ

where P is the complex pressure amplitude depending on the radian frequency o: Substituting
Eq. (2) into Eq. (1), one obtains the well-known Helmholtz equation

r2P þ k2P ¼ 0 in R; ð3Þ

where k ¼ o=c is the wave number. The appropriate boundary conditions on S involve

P ¼ %P or rP � nþ r %an ¼ 0; ð4a;bÞ

where %P is the prescribing acoustic pressure, r the mean fluid density, %an ¼ %anðx;oÞ the amplitude
of the normal acceleration anðx; tÞ: The Sommerfeld radiation condition which ensures that energy
propagates in an outward direction is

lim
r-N

rðd�1Þ=2 qP

qr
� ikP

� �
¼ 0; ð5Þ

where d ¼ 2 or 3 is the number of space dimensions, r is the distance measured from a global
origin O within the boundary S:
The general solution of an exterior 2-D Helmholtz Eq. (3) for outgoing wave, is of the form

Pðr; yÞ ¼
X

m

H2
mðkrÞðAm cosðmyÞ þ Bm sinðmyÞÞ; m ¼ 0; 1; 2;y; ð6Þ

whereH2
m is m order Hankel function of second kind.

In this paper the fractal two-level FEM are developed to solve the unbounded domain acoustic
problems governed by Eqs. (1)–(5).

3. Fractal two-level FEM for exterior acoustic problem

Consider an infinite domain R with a piecewise smooth inner boundary S: For solving the
boundary-value problem (1)–(5), one introduces an artificial boundary S1 to divide the domain R
into two parts: R1 and R2; as shown in Fig. 3. In the region R1 the conventional FEM is employed,
in the region R2 the fractal FEM is adopted.

3.1. FE equation in domain R1

The domain R1 is discretized according to the conventional finite element method. The
interpolations of sound pressure P and the co-ordinates x for an isoperimetric formulation are
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expressed by

P ¼ ½NðxÞ	fPg; ð7Þ

x ¼ ½NðxÞ	fXg; ð8Þ

where NðxÞ is the shape function matrix, and fPgand fXg are the nodal sound pressure and the
nodal co-ordinate vectors, respectively. Applying variational method, one transforms problems
(3)–(4) to a matrix equation that can be written in the form [24]

½K� k2M	fPg ¼ fFg; ð9Þ

with the related coefficients matrices

Kij ¼
X

K
ðeÞ
ij ¼

XZ
Oe

rNi � rNj dOe; ð10Þ

Mij ¼
X

M
ðeÞ
ij ¼

XZ
Oe

NiNj dOe; ð11Þ

Fi ¼
X

F
ðeÞ
i ¼ r

XZ
Se

Ni %an dSe; ð12Þ

where K andM are the stiffness and mass matrices of the acoustic medium, respectively, fPg is the
nodal pressure vector undetermined and fFg the acoustic forcing vector on S:

3.2. Fracta1 FE equation in domain R2

3.2.1. Transformation of dynamical stiffness matrix and global interpolation function
Using Eq. (6), the nodal pressures fPg can be transformed to the generalized co-ordinates fag

by,

fPg ¼ Tfag; ð13Þ

where T is a transformation matrix evaluated from Eq. (6).
Substituting Eq. (13) into variation procedure for deducing FEM formula, one has

TT½K� k2M	Tfag ¼ TTfFg; ð14Þ

where the superscript ‘T’ indicates matrix transposition. As the order of fag is far less than that of
fPg; solving Eq. (14) is easier than that of Eq. (8).

3.2.2. Fractal transformation of mass matrix and stiffness matrix
In the region R2; the fractal geometric concept is adopted for forming self-similar meshes with

the ratio a in terms of their length dimensions. Consider two respective elements in the two
adjacent fractal layers. Their co-ordinates can be expressed as

X
ðmþ1Þ
i ¼ aX

ðmÞ
i ;

Y
ðmþ1Þ
i ¼ aY

ðmÞ
i ; ð15Þ

where the superscript denotes the layer number in which the element is located in.
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The formulas for calculating the element acoustical stiffness and mass matrices in the local
co-ordinate are

kij ¼
Z 1

�1

Z 1

�1

J�1 �
qNi=qx

qNi=qZ

( )" #T
� J�1 �

qNj=qx

qNj=qZ

( )" #
� detðJÞ dx dZ; ð16Þ

mij ¼
Z 1

�1

Z 1

�1

NiNj detðJÞ dx dZ; ð17Þ

where

J ¼
@x=qx qy=qx

qx=qZ qy=qZ

" #
: ð18Þ

From Eqs. (7), (15) and (18) one has

Jðmþ1Þ ¼ aJðmÞ: ð19Þ

Substituting Eq. (19) into Eqs. (16) and (17), one obtains

½K	ðmþ1Þ ¼ ½K 	ðmÞ and ½M	ðmþ1Þ ¼ a2½M	ðmÞ: ð20a;bÞ

Let the nodes on the artificial boundary be the master nodes and those within the region R2 be
the slave nodes with node pressure written as fPmg and fPsg; respectively. The transformation is
needed only for the slave node pressure. For the first layer, the stiffness matrix ½K 	 and mass
matrix ½M	 are first partitioned with respect to m and s in block form as

ð½K f 	 � k2½M f 	ÞfPgf ¼
K f

11 K f
12

K f
21 K f

22

" #
� k2

M f
11 M f

12

M f
21 M f

22

" # !
fPmg

f

fPsg
f

( )
; ð21Þ

where the superscript ‘f’ indicates the first layer. The corresponding transformation matrix is

I 0

0 T f

" #
:

After transformation, one has

K f
11 K f

12T
f

T fTK f
21 T fTK f

22T

" #
� k2

M f
11 M f

12T
f

T fTM f
21 TTM f

22T
f

" # !
fPmg

f

fag

( )
¼ f0g: ð22Þ

For the layer n; the transformed matrix can be written as follows

Di ¼ ½Ti	T½K f � k2 � a2ði�1ÞM f 	½Ti	: ð23Þ

After summing from layer 2 to infinity, one has

%D ¼
XN
i¼2

½Ti	T½K f � k2 � a2ði�1ÞM f 	½Ti	; ð24Þ

where ½Ti	 is proportional to the distance r from O in the form r�1=2e�r and is related to a ¼
riþ1=ri: Therefore, Eq. (24) represents a convergent series in terms of r and can be summed in
closed form.
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4. Examples

The performance of the fractal FEM for the sound radiation problems is investigated in this
section. Consider the case when the inner boundary is subject to cosine distributed sound pressure
%P cosðyÞ: The fractal ratio a is taken to be 1.15 and Eq. (6) is truncated at the 60th term of the
Fourier expansion, m ¼ 60: Therefore, the matrix dimension of the exterior region is always equal
to 60 independent of the number of layers taken. The frequency is in the range from 35 to 2835Hz
and the sound velocity is 1400m/s. All the results are plotted as the non-dimension pressure jP= %Pj
against the non-dimension wave number kR: In the case of circular vibrating body, the radius of
the artificial boundary S1 is taken to be three times of that of the inner boundary. For the elliptical
vibrating body, the radius of the artificial boundary is three times of the length of the half
major axis.
Fig. 4 shows the solutions for the circular inner boundary S with unit radius at points R ¼ 6;

y ¼ p=4: Fig. 4(a)–(d) are for the fractal layer numbers taken to be 15, 21, 27, and 31, respectively.
Correspondingly, the infinity domain R2 is truncated at the distances R ¼ 24:5; 56:5; 130:6 and
228.4, respectively . Figs. 5 and 6 are the results at different points with the fractal layer number
taken to be 31. Figs. 7 and 8 are the solutions for the elliptical bodies with the quotients
lb=la ¼ 1:5and 1.25, respectively. From these figures, one can see that as the unbounded domain is
truncated at the distance far enough, the results are almost the same with the value calculated by
the wave envelope elements method [5–10].
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Fig. 4. Radiation pressure amplitude ratio from circular inner boundary at R ¼ 6; y ¼ p=4:
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5. Conclusion

The fractal two-level finite element method has been shown to be effective in calculating the
infinite domain sound problems. This method has two distinct advantages: one is by employing
the global interpolation functions satisfying the Sommerfeld radiation condition automatically so
that the unknowns can be greatly reduced; and the other is by adopting the fractal geometrical
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Fig. 5. Radiation pressure amplitude ratio at R ¼ 6; (a) y ¼ p=6; (b) y ¼ p=3 from circular inner boundary.

Fig. 6. Radiation pressure amplitude ratio at (a) R ¼ 9; (b) R ¼ 15; y ¼ p=6 from circular inner boundary.

Fig. 7. Non-dimension radiation pressure from elliptical vibrating body with lb=la ¼ 1:5 (a) at R ¼ 9; y ¼ p=4; (b) at
R ¼ 9; y ¼ p=6:
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concept to form the similar meshes so that the global dynamical matrix can be easily obtained.
Several numerical examples are performed with results showing the effectiveness of this method.
Further work to extend it to three-dimensional problems is being investigated.
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